用途:
PlantPen植物NDVI測量儀是一款設(shè)計(jì)精巧、可快速測量植物NDVI指數(shù)的便攜式儀器。根據(jù)植物的光譜反射系數(shù)可以評定葉片葉綠素相對含量。
NDVI(歸一化植被指數(shù))是通過計(jì)算植物葉片對660 nm和740 nm兩種波長光的吸收和反射關(guān)系計(jì)算得到的值,反應(yīng)植物葉綠素含量的重要參數(shù)。一個(gè)方便的葉夾、簡單的兩鍵操作以及明亮的顯示屏使得PlantPen在不干擾測量植物(無葉片脫落或損壞)下仍方便使用。
有兩個(gè)版本:測量PRI(光化學(xué)反射植被指數(shù))的PRI 210和測量NDVI(歸一化植被指數(shù))的NDVI 310。PRI是測量植物在530nm和590nm處反射率的參數(shù),這兩個(gè)波段的光譜反射率受葉黃質(zhì)循環(huán)和影響,并影響植物的光能利用效率。
測量數(shù)據(jù)存儲于儀器內(nèi)部,可選擇藍(lán)牙或USB數(shù)據(jù)線與計(jì)算機(jī)連接,使用專業(yè)FluorPen軟件進(jìn)行數(shù)據(jù)傳輸和可視化分析。
特點(diǎn):
設(shè)計(jì)緊湊、堅(jiān)固的PRI非常適用于野外環(huán)境、植物溫室等;
手持葉夾,雙鍵操作,LED顯示屏設(shè)計(jì),使用方便;
非侵入式無損測量;
內(nèi)置鋰電池供電,方便耐用;
USB或藍(lán)牙傳輸數(shù)據(jù),專業(yè)軟件進(jìn)行可視化分析;
應(yīng)用領(lǐng)域:
光合作用教學(xué)與研究;
植物分子生物學(xué);
植物的篩選和實(shí)地研究;
逆境生理;
農(nóng)學(xué)與林業(yè);
技術(shù)規(guī)格:
測量參數(shù) | NDVI(歸一化植被指數(shù)):NDVI=(RNIR-RRED)/(RNIR+RRED) PRI(光化學(xué)反射植被指數(shù)):PRI=(R531-R570)/(R531+R570) |
測量光 | 內(nèi)置雙波段光源VIS = 635 nm, NIR = 760nm |
探測波長范圍 | PIN光電二極管帶620~750 nm波段濾光器 |
測量光 | 可調(diào)節(jié)閃光持續(xù)時(shí)間 |
探測波長范圍 | PIN光電二極管帶697~750nm濾光器 |
FluorPen 1.0軟件 | Windows 2000, XP或更高 |
存儲容量 | 最大16MB |
數(shù)據(jù)存儲容量 | 最大10萬個(gè)數(shù)據(jù)點(diǎn) |
顯示 | 2×8字符LCD顯示屏 |
按鍵 | 密封2鍵 |
自動關(guān)機(jī) | 無操作3分鐘后自動關(guān)機(jī) |
電源 | 4節(jié)AAA堿性或可充電電池 |
電池電量 | 典型情況下可連續(xù)操作70個(gè)小時(shí),低電量LCD顯示 |
尺寸 | 170mm×57 mm×30 mm |
重量 | 188克 |
樣品固定器 | 機(jī)械式葉夾 |
工作環(huán)境 | 溫度0~+55℃,相對濕度0~95%(非冷凝) |
存儲環(huán)境 | 溫度-10~+60℃,相對濕度0~95%(非冷凝) |
保修 | 1年 |
案例分析:
案例一:兩種石耳在失水狀態(tài)下的光譜反射率和光合效率研究
對于NDVI, Umbilicaria arctica和Umbilicaria hyperborea隨著水勢的變化有相同的變化趨勢,均隨著水勢降低而降低,但兩物種之間存在差異。完全水化的U. arctica的NDVI在0.55-0.75之間,U. hyperborea的NDVI比較低,在0.30-0.55之間;脫水后的U. arctica在0.55-0.30之間,而U. hyperborea在0.30-0.15之間。
近期發(fā)表文獻(xiàn):
CALDERóN R., LUCENA C., TRAPERO-CASAS J. L. ET. AL. (2014): Soil temperature determines the reaction of olive cultivars to Verticillium dahliae pathotypes. PLoS One. Volume 9. DOI:10.1371/journal.pone.0110664
CALDERóN, R., ZARCO-TEJADA, P.J., LUCENA, C. ET AL. (2013):High-resolution airborne hyperspectral and thermal imagery for pre-visual detection of Verticillium wilt using fluorescence, temperature and narrow-band indices, Remote Sensing of Environment. Volume 139 Pages, 231-245. DOI:10.1016/j.rse.2013.07.031
ZARCO-TEJADA P.J., GUILLEN-CLIMENT M.L., HERNANDEZ-CLEMENTE R. ET AL. (2013): Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle. Agricultural and Forest Meteorology 171-172. Pages. 281-294. DOI:10.1016/j.agrformet.2012.12.013
JUPA R., HáJEK J., HAZDROVá J. ET AL. (2012): Interspecific differences in photosynthetic efficiency and spectral reflectance in two Umbilicaria species from Svalbard during controlled desiccation. Czech Polar Reports, Brno, Volume 2, Pages 31-41. DOI: 10.5817/CPR2012-1-4
KOVáR, M., VEVERKOVá, E. AND ?ERNY, I. (2012): Utilization of Enfrared Thermography and Leaf Reflectance Indices in Evaluation of Effects of the Treatment of Sunflower (Helianthus annuus L.) by Biologically Active Compounds. Acta fytotechnica et zootechnica. Volume 15, Pages 23-28
SHRESTHA S., BRUECK H. AND ASCH F. (2012): Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. Journal of Photochemistry and Photobiology B: Biology. Volume 113, Pages 7–13. DOI:10.1016/j.jphotobiol.2012.04.008
ZARCO-TEJADA P.J., GONZALES-DUGO V. AND BERNI J.A.J. (2012):Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment. Volume, 117. Pages 322-337. DOI:10.1016/j.rse.2011.10.007
CHYTYK, C. J., HUCL, P. J. AND GRAY, G. R. (2011): Leaf photosynthetic properties and biomass accumulation of selected western Canadian spring wheat cultivars. Canadian Journal of Plant of Science. Volume 91, Pages 305-314. DOI: 10.4141/CJPS0916.
產(chǎn)地:捷克